2. Electronics & Telecommunication Engineering

10.3.2019 AN 2-4 PM

- 1. Which of the following is obtained by drawing a single crystal from a melt of germanium whose type is changed during the drawing process by adding first *p*-type and then *n* type impurities?
 - 1. Alloy junction
 - 2. Diffused junction
 - 3. Grow junction
 - (a) 1 only
 - (b) 2 only
 - (c) 3 only
 - (d) 1, 2 and 3
- 2. Circuits that are used to eliminate portions of a signal that are above or below a specified level are called:
 - (a) Clampers
 - (b) Clippers
 - (c) Voltage doublers
 - (d) Detectors
- 3. The circuit consisting of an op-amp connected in a non-inverting configuration and two RC networks connected as the frequency-selecting feedback circuit is called:
 - (a) Phase shift oscillator
 - (b) Colpitts oscillator
 - (c) Hartley oscillator
 - (d) Wien-bridge oscillator

- 4. Consider an inverting amplifier with a feedback resistor $R_2 = 10 k\Omega$ and an op-amp with parameters; $A_{OL} = 10^5$ and $R_i = 10 k\Omega$. Assuming the output resistance R_o of the op-amp as negligible, the closed-loop input resistance at the inverting terminal of an inverting amplifier will be nearly:
 - (a) 0.4Ω
 - (b) 0.2Ω
 - (c) 0.1Ω
 - (d) 0.05Ω
- 5. Consider the following data for common-emitter hybrid equivalent circuit of BJT transistor, $I_E=2.5~mA$, $h_{fe}=140$, $h_{oe}=20~\mu S$ and $h_{ob}=0.5~\mu S$

The values of h_{ie} and r_o will be nearly:

- (a) $1.46 k\Omega$ and $30 k\Omega$
- (b) $1.46 k\Omega$ and $50 k\Omega$
- (c) $1.64 k\Omega$ and $50 k\Omega$
- (d) $1.64 k\Omega$ and $30 k\Omega$
- 6. Since the ideal op-amp responds only to the difference between the two input voltage signals v_1 and v_2 . It maintains a zero output signal for $v_1 = v_2$. When $v_1 = v_2 \neq 0$, the characteristic is called:
 - (a) Common mode rejection
 - (b) Common mode input signal
 - (c) Negative supply voltage
 - (d) Positive supply voltage

- 7. The output voltage is the sum of the input voltages, with different weighting factors. This circuit is called:
 - (a) Non inverting summing amplifier
 - (b) Ideal op-amp
 - (c) Inverting summing amplifier
 - (d) Non inverting amplifier
- 8. For a non inverting op-amp when $R_i = \infty$, in an open circuit, the closed-loop gain becomes $A_v = \frac{v_0}{v_i} = 1$, then output voltage follows the input; this op-amp circuit is called:
 - (a) Basic amplifier
 - (b) Voltage follower
 - (c) Summing amplifier
 - (d) Non inverting amplifier
- 9. What is the output voltage of an op-amp for input voltages of $V_{i1} = 150 \,\mu V$, $V_{i2} = 140 \,\mu V$ with amplifier differential gain of $A_d = 4000$ and the value of CMRR = 100?
 - (a) 72.2 *mV*
 - (b) 63.4 *mV*
 - (c) 54.6 *mV*
 - (d) 45.8 mV

- 10. The $\left(\frac{S}{N}\right)_q$ of a delta modulation, at a bit rate of 64 *kbps* and (baseband signal) *BW* of 4 *kHz* will be:
 - (a) 26 dB
 - (b) 22 *dB*
 - (c) 18 *dB*
 - (d) 12 *dB*
- 11. A resistance R is connected in series with a parallel combination of two resistances 12Ω and 8Ω . If the power dissipated in the circuit is 70 W when the applied voltage is 20 V across the circuit. The resistance R will be nearly:
 - (a) 1.07Ω
 - (b) 0.91Ω
 - (c) 0.83Ω
 - (d) 0.75Ω
- 12. A 120 V ac circuit contains 10 Ω resistance and 30 Ω reactance in series. The average power in the circuit will be nearly:
 - (a) 134 W
 - (b) 144 W
 - (c) 158 W
 - (d) 168 W

- 13. A 25 hp, 250 V dc series motor has armature resistance of 0.1 Ω , field resistance of 0.05 Ω and brush contact drop 3 V. When the line current is 80 A, the speed is 600 rpm and when the line current is 100 A, the speed will be nearly:
 - (a) 394 *rpm*
 - (b) 474 *rpm*
 - (c) 556 *rpm*
 - (d) 636 rpm
- 14. A 200/400-V, 10-kVA, 50 Hz single-phase transformer has at full-load a copper loss of 120 W. If it has an efficiency of 98 % at full-load unity power factor, the efficiency of the transformer at half load 0.8 power factor lagging will be:
 - (a) 82 %
 - (b) 87 %
 - (c) 92 %
 - (d) 97 %
- 15. A 3- phase, 6- pole 50 *Hz* induction motor delivers 3.73 *kW* at 950 *rpm*. If the stator loss is 250 *W*, the stator input will be:
 - (a) 4420 W
 - (b) 4340 W
 - (c) 4260 W
 - (d) 4180 W

		6
16.	copp	25 kVA, $3300/230 V$, 1-phase transformer, the iron and full-load er losses are respectively $350 W$ and $400 W$. The efficiency at half $0.8 power factor will be nearly:$
	(a)	83 %
	(b)	88 %
	(c)	94 %
	(d)	99 %
17.		phase induction motor is wound for 4-poles and is supplied from a z system. When speed of the rotor is 600 rpm , the rotor frequency will
	(a)	30 Hz
	(b)	35 <i>Hz</i>
	(c)	40 Hz
	(d)	45 <i>Hz</i>

18. If a 6-pole induction motor running from a 50 *Hz* supply has an emf in the rotor of frequency 2.5 *Hz*. The speed of motor will be:

- (a) 910 *rpm*
- (b) 930 *rpm*
- (c) 950 rpm
- (d) 970 rpm

19.	Whi	ich of the foll	owing are the engineering materials?
		1.	Metals and alloys
		2.	Ceramics and glasses
		3.	Organic polymers
	(a)	1 and 2 only	у
	(b)	1 and 3 only	у
	(c)	2 and 3 only	у
	(d)	1, 2 and 3	
20.		volume of a I is <i>R</i> will be:	Face-Centered Cubic (FCC) unit cell in terms of the atomic
	(a)	$16 R^3 \sqrt{2}$	
	(b)	$12 R^3 \sqrt{2}$	
	(c)	$8 R^3 \sqrt{2}$	
	(d)	$4 R^3 \sqrt{2}$	
21.		ch one of perature?	the following ceramic composite has high melting
	(a)	Fibre glass	
	(b)	Borosilicate	e
	(c)	Glass-cerar	mic

(d)

Fused silica

22. Consider the following data regarding saturation magnetization and flux density for Nickel:

Nickel density = $8.90 \times 10^6 \ g/m^3$ Bohr magnetons /atom = 0.60Atomic weight $A_{Ni} = 58.71 \ g/mol$ Avogadro's number $N_A = 6.023 \times 10^{23} \ atoms/mol$ Magnitude of Bohr magneton $\mu_B = 9.27 \times 10^{-24} \ A.m^2$

The saturation magnetization for nickel will be:

- (a) $3.7 \times 10^5 A/m$
- (b) $4.5 \times 10^5 A/m$
- (c) $5.1 \times 10^5 A/m$
- (d) $6.3 \times 10^5 A/m$
- 23. Which one of the following ferromagnetic material has the high critical temperature?
 - (a) Lead
 - (b) Tungsten
 - (c) Titanium
 - (d) Tin
- 24. Which one of the following is *not* a hard magnetic material?
 - (a) Tungsten steel
 - (b) Cobalt steel
 - (c) Barium ferrite
 - (d) Commercial iron

25.	Consider the following	lowing properties for high temperature structural material:
	1.	Superior Oxidation Resistance
	2.	Superior Creep Resistance
	3.	High Hardness
	4.	Good Mechanical Strength
	Which one of t	he following materials is having the potential to satisfy th

ne above properties?

- Silicon carbide (a)
- (b) Ceramic
- Zirconia (c)
- Alumina (d)
- In order to make optimum method for certain set of nano-structure patterns, 26. materials and volume requirements which of the following steps of processes are involved?
 - Interference Lithography 1.
 - 2. Electron-Beam Lithography
 - 3. Nano-Patterned Replication
 - 1, 2 and 3 (a)
 - (b) 1 and 2 only
 - 1 and 3 only (c)
 - (d) 2 and 3 only

27.	If a low pass filter has an input $\frac{s}{N}$ of 20 and the input voltage is 3 mV then
	the noise voltage will be:

- (a) $0.77 \, mV$
- (b) $0.67 \, mV$
- (c) $0.57 \, mV$
- (d) $0.47 \, mV$

28. Consider the following set of independent current measurements:

The average range of error will be:

- (a) $\pm 0.04 A$
- (b) $\pm 0.03 A$
- (c) $\pm 0.02 A$
- (d) $\pm 0.05 A$

29. Electromagnetic damping is because of:

- 1. Friction produced owing to motion of coil in the air surrounding it
- 2. The induced effects when the coil moves in the magnetic field and closed path is provided for current to flow
- 3. Dissipation of energy of rotation
- (a) 1 only
- (b) 2 only
- (c) 3 only
- (d) 1, 2 and 3

- 30. A mild steel torsion bar of 30 mm diameter is used for measurement of a torque of $100 \, Nm$. If the shear modulus of mild steel is $80 \, GN/m^2$, the angle of twist will be nearly:
 - (a) $0.36 \times 10^{-3} \, rad$
 - (b) $0.32 \times 10^{-3} \, rad$
 - (c) $0.28 \times 10^{-3} \, rad$
 - (d) $0.24 \times 10^{-3} \, rad$
- 31. A linear second order with single degree of freedom system has a mass of $8 \times 10^{-3} kg$ and stiffness of 1000 N/m. The natural frequency of the system will be:
 - (a) 398.6 *rad/sec*
 - (b) 373.2 *rad/sec*
 - (c) 353.6 *rad/sec*
 - (d) 318.2 *rad/sec*
- 32. In a measurement system a quantity whose magnitude has a definite repeating time cycle is called:
 - (a) Transient periodic
 - (b) Steady state periodic
 - (c) Dynamic state periodic
 - (d) Transient state periodic

33.	The wide band noise in an electronic measurement system is sometimes called:			
	(a)	Johonson noise		
	(b)	Conducted noise		
	(c)	White noise		
	(d)	Radiated noise		
34.	A certain resistor has a voltage drop of $110.2V$ and a current of $5.3A$. If the uncertainties in the measurements are $\pm0.2V$ and $\pm0.06A$ respectively, then the uncertainty in power will be:			
	(a)	$\pm 3.7 W$		
	(b)	\pm 4.7 W		
	(c)	± 5.7 W		
	(d)	\pm 6.7 W		
35.	The I	FM techniques in telemetry is usually employed at:		
	(a)	100 MHz and above with much larger bandwidth than AM		
	(b)	100 MHz and above with much lesser bandwidth than AM		
	(c)	Less than 100 MHz with much larger bandwidth than AM		
	(d)	Less than 100 MHz with much lesser bandwidth than AM		
36.		ch one of the following provides constant bandwidth and proportional width channels in a radio telemetry system?		
	(a)	FM/FM system		
	(b)	PCM/FM system		
	(c)	Spread Spectrum system		

(d) AM/FM system

37.		th one of the following strain gauges has excellent Hysteresis acteristics?	
	(a)	Bonded wire	
	(b)	Unbonded metal	
	(c)	Bonded metal foil	
	(d)	Semi conductor	
38.	struct elasti	sistance wire strain gauge with a gauge factor of 2 is bonded to a steel tural member subjected to a stress of $100 MN/m^2$. The modulus of city of steel is $200 GN/m^2$. The percentage change in gauge resistance o applied stress will be:	
	(a)	0.05 %	
	(b)	0.1 %	
	(c)	0.2 %	
	(d)	0.4 %	
39.	Isomorphism in circuit theory is the property between two graphs so that both have got same:		
	(a)	Sub-graph	
	(b)	Connected graph	
	(c)	Path	
	(d)	Incidence matrix	

- 40. The real parts of all poles and zeros in a driving point function must be:
 - (a) Zero
 - (b) Negative
 - (c) Zero or negative
 - (d) Positive
- 41. Consider the following function:

$$z(s) = \frac{3(s+1)}{s(s+2)(s+3)}$$

The final value of z(t) will be:

- (a) $\frac{1}{2}$
- (b) $\frac{3}{2}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{3}$
- 42. The current through a circuit element is $\frac{4 s^2}{s+7}$.

The current in t domain at $t \to \infty$ and $t \to 0$ will be respectively:

- (a) Zero and One
- (b) Zero and Infinity
- (c) Infinity and Zero
- (d) Infinity and One

- 43. Which one of the following networks is called a ladder network?
 - (a) Non-recurrent network
 - (b) Distributed network
 - (c) Recurrent network
 - (d) Passive network
- 44. In hybrid parameter representation, the voltage of the input port and the current of the output port are expressed in terms of the:
 - (a) Voltage of input port and current of output port
 - (b) Current of input port and voltage of output port
 - (c) Voltage of input port and current of input port
 - (d) Current of output port and voltage of output port
- 45. A series circuit has $R = 4 \Omega$ and L = 0.01 H. Its impedance at 100 Hz will be nearly:
 - (a) $7.45 \angle 37.5^{\circ} \Omega$
 - (b) $7.45 \angle 57.5^{\circ} \Omega$
 - (c) $8.25 \angle 37.5^{\circ} \Omega$
 - (d) $8.25 \angle 57.5^{\circ} \Omega$
- 46. In a series *RLC* circuit $R = 3 \Omega$, $X_L = j 6\Omega$, $X_C = -j 2\Omega$. If the current is $10 \angle -143^\circ$ A, the voltage applied across the combination will be:
 - (a) $50 \angle -90^{\circ} V$
 - (b) $50 \angle 90^{\circ} V$
 - (c) $25 \angle -90^{\circ} V$
 - (d) 25 ∠90° V

47.		series R - L circuit, $R = 20 \Omega$, while $L = 60 mH$. The input current the supply voltage by 60° . The value of applied frequency will be ly:		
	(a)	91.9 Hz		
	(b)	87.7 Hz		
	(c)	82.7 Hz		
	(d)	78.9 <i>Hz</i>		
48.		The charge carrier transit time is 70 <i>ns</i> for a silicon diode of 10 <i>mA</i> forward current. The diffusion capacitance will be:		
	(a)	1~nF		
	(b)	3 nF		
	(c)	5 nF		
	(d)	7~nF		
49.		A 6-bit DAC has a step size of 50 mV . The percentage resolution will be nearly:		
	(a)	2.8 %		
	(b)	2.4 %		
	(c)	1.6 %		
	(d)	1.2 %		

50.	A 500 mV level is to be converted into a 7 bit digital code, the analog levels
	represented by the MSB will be:

- (a) 250 *mV*
- (b) 300 *mV*
- (c) 400 mV
- (d) 500 *mV*

51. In a 8 bit counter type Analog to Digital converter which is driven by $500 \, kHz$ clock. The maximum conversion time will be:

- (a) $542 \mu s$
- (b) $524 \mu s$
- (c) $512 \mu s$
- (d) $484 \mu s$

52. The number of input gates required to realize the following expression,

$$f = ABC + A\bar{B}CD + E\bar{F} + AD$$

will be:

- (a) 13
- (b) 14
- (c) 15
- (d) 16

53. The simplified expression of:

$$\bar{X} \bar{Y} \bar{Z} + \overline{X} \bar{Y} \bar{Z} + \bar{Y} \bar{Z} + X \bar{Z}$$

will be:

- (a) \bar{Z}
- (b) \overline{Y}
- (c) \bar{X}
- (d) $\overline{X}\overline{Y}$

54. A computer has a 2 Mb memory. The decimal equivalent of 2 Mb will be:

- (a) 2,000 000
- (b) 2,048,546
- (c) 2,097,152
- (d) 2,194,304

55. If, p_k is the probability of occurrence of k^{th} message and r is the base of the logarithm used, then the self-information content of a message I_k will be:

- (a) $\log_{r} \frac{1}{p_k}$ units
- (b) $\log_{\mathbf{r}} p_k$ units
- (c) $-\log_{r} \frac{1}{p_{k}}$ units
- (d) $p_k \log_r \frac{1}{p_k} units$

56.	A receiver connected to an antenna whose resistance is 50Ω has equivalent noise resistance of 30Ω . The receiver's noise figure in decibels will be:			
	(a)	1.6		
	(b)	2.6		
	(c)	3.2		
	(d)	4.2		
57.		A broadcast radio transmitter radiates $10kW$ when modulation is 60% . The carrier power will be nearly:		
	(a)	32.5 <i>kW</i>		
	(b)	24.5 <i>kW</i>		
	(c)	16.5 <i>kW</i>		
	(d)	8.5 <i>kW</i>		
		n the carrier and one of the sidebands are suppressed in an AM wave ulated to a depth of 100 %, the power saving will be nearly:		
	(a)	73 %		
	(b)	78 %		
	(c)	81 %		
	(d)	83 %		

- 59. Which one of the following demodulators is widely used in high quality *FM* radio receivers?
 - (a) FM Feedback
 - (b) Phase-locked loop
 - (c) Foster-Seeley discriminator
 - (d) Extension
- 60. In an automatic frequency control of a receiver the feedback for *AFC* is taken from:
 - (a) Detector stage
 - (b) Mixer stage
 - (c) Local oscillator
 - (d) LF IF amplifier
- 61. The quantization noise power N_q (Mean squared value) of the quantization error, with usual notation will be:
 - (a) $\frac{V_p^2}{2}$
 - $(b) \qquad \frac{{V_p}^2}{3 M^2}$
 - (c) $\frac{3}{2}M^2$
 - (d) $\frac{S^2}{12}$

- 62. In order to produce '100 *percent white*' result, the sensitivity of human eye towards Red, Green and Blue must be:
 - (a) Y = 0.30 R + 0.59 G + 0.11 B
 - (b) Y = 0.60 R + 0.28 G + 0.12 B
 - (c) Y = 0.50 R + 0.25 G + 0.25 B
 - (d) Y = 0.30 R + 0.60 G + 0.1 B
- 63. Which one of the following methods will be used to transmit teletype on-off keying?
 - (a) ASK
 - (b) PSK
 - (c) PCM
 - (d) FSK
- 64. For a *BPSK* modulator with a carrier frequency of 70 *MHz* and an input bit rate of 10 *Mbps*, the minimum Nyquist bandwidth will be:
 - (a) 05 *MHz*
 - (b) 10 *MHz*
 - (c) 30 MHz
 - (d) 60 *MHz*

65. The impulse $\delta(t)$ and unit step function u(t) are related to each other as:

- (a) $\delta(t) = \frac{d}{dt} u(t)$
- (b) $\delta(t) = u(t) + u(2t 1)$
- (c) $\delta(t) = \int u(t)dt$
- (d) $\delta(t) = 2.u(t)$

66. Signal flow graphs can be used to represent:

- (a) Linear systems only
- (b) Non-linear systems only
- (c) Both linear and non-linear systems
- (d) Time-invariant as well as time varying systems

67. Consider the second-order feedback system with transfer function:

$$L(s) = \frac{K}{s(1+s)}$$

The breakaway point of root locus of the system at *s* will be:

- (a) 1
- (b) -1
- (c) $\frac{1}{2}$
- (d) $-\frac{1}{2}$

68. Consider the third-order feedback system whose loop transfer function L(s) = G(s)H(s) is defined as:

$$L(s) = \frac{K}{(s+1)^3}$$

The value of *K* for which the system is on the verge of instability will be:

- (a) 8
- (b) 12
- (c) 14
- (d) 16

69. A unity feedback system has:

$$G(s) = \frac{K}{s(s+1)(0.1s+1)}$$
 and $r(t) = 10 t$

For $e_{ss}(t) < 0.1$, for a unit-ramp input, the minimum value of K will be:

- (a) 05
- (b) 10
- (c) 15
- (d) 20

70. The compensator required improving the transient response and margin of stability of a system is:

- (a) Lag
- (b) Lead
- (c) Lag-lead
- (d) All of these

- 71. Frequency response test is *not* recommended for system with:
 - (a) Very low time constants
 - (b) Small time constants
 - (c) Large time constants
 - (d) Any time constants
- 72. For a lag-lead compensator having transfer function:

$$G_{\mathcal{C}}(s) = \left(\frac{s + \frac{1}{\tau_1}}{s + \frac{1}{\beta \tau_1}}\right) \left(\frac{s + \frac{1}{\tau_2}}{s + \frac{1}{\alpha \tau_2}}\right);$$

- 1. $\beta > 1$
- 2. $\beta < 1$
- 3. $\alpha > 1$
- 4. $\alpha < 1$

Which of the above are correct?

- (a) 1 and 4 only
- (b) 1 and 3 only
- (c) 2 and 4 only
- (d) 2 and 3 only
- 73. In computer system the event that causes the interruption of program execution is called:
 - (a) Interrupt
 - (b) Recovery
 - (c) Debugging
 - (d) Exception

74.		computer system the data transfer between the main memory and the registers takes place through:
	(a)	GPR and Memory Data register MDR
	(b)	Accumulator and program controller
	(c)	Memory Address Register (MAR) and Memory Data register MDR
	(d)	Memory Address Register (MAR) and accumulator
75.		address of the next instruction to be executed by the current process is ided by the:
	(a)	Process stack
	(b)	CPU registers
	(c)	Program counter
	(d)	Pipe
76.	To a	ccess the services of an operating system, the interface is provided by:
	(a)	System calls
	(b)	API
	(c)	Library
	(d)	Assembly instructions
77.		nked allocation solves the external-fragmentation and size-declaration lems of:
	(a)	Indexed allocation
	(b)	Contiguous allocation
	(c)	Linked allocation
	(d)	File allocation

78.	The	code segment that misuses its environment is called:		
	(a)	Internal thief		
	(b)	Trojan horse		
	(c)	Code stacker		
	(d)	Interrupt		
79.	Perip	Peripherals are normally <i>not</i> connected to the system bus because:		
		1. Peripherals work with a wide variety of theories of operation		
		2. Peripherals are slower than memory or <i>CPU</i>		
		3. Peripherals may have different data formats and word lengths than that of the computer to which they are connected		
	(a)	1 and 2 only		
	(b)	1 and 3 only		
	(c)	2 and 3 only		
	(d)	1, 2 and 3		
80.	For awar	an effective assembly language programming, programmer should be re of:		
		1. Programming model of the processor		
		2. Complete instruction set details of the processor		
		3. Memory map and I/O map of the computer system		
		4. Details of the assembler including rules of the language		
	(a)	1, 2 and 3 only		
	(b)	1, 2 and 4 only		
	(c)	1, 3 and 4 only		
	(d)	1, 2, 3 and 4		

- 81. For vectors, $A = -4a_x + 2a_y + 3a_z$ and $B = 3a_x + 4a_y a_z$; The magnitude of 5A - 2B will be:
 - (a) $\sqrt{969}$
 - (b) $\sqrt{699}$
 - (c) $\sqrt{696}$
 - (d) $\sqrt{669}$
- 82. A zero operand computer always keeps operands in:
 - 1. Stack
 - 2. General Purpose Register (*GPR*)
 - 3. Program counter
 - (a) 1 only
 - (b) 2 only
 - (c) 3 only
 - (d) 1, 2 and 3
- 83. In a 8051 microprocessor, PCON register controls the baud rate in:
 - 1. Synchronous transmission
 - 2. Asynchronous transmission
 - (a) 1 only
 - (b) 2 only
 - (c) Both 1 and 2
 - (d) Neither 1 nor 2

- 84. Which of the following specifications are to be mentioned in *VLSI* design?
 - 1. The algorithm to be implemented with mathematical representation
 - 2. Number of inputs and outputs in the design and number of bits used in internal arithmetic operation
 - 3. Number of clock signals and maximum clock frequency
 - 4. Area and power dissipation in the chip
 - (a) 1, 2 and 3 only
 - (b) 1, 2 and 4 only
 - (c) 1, 3 and 4 only
 - (d) 1, 2, 3 and 4
- 85. Which of the following properties are correct for Region of Convergence (ROC)?
 - 1. It is a ring or disk in the z-plane centered at the origin
 - 2. It cannot contain any poles
 - 3. It is of a LTI stable system contains the unit circle
 - 4. It must be a connected region
 - (a) 1, 2 and 3 only
 - (b) 1, 2 and 4 only
 - (c) 1, 3 and 4 only
 - (d) 1, 2, 3 and 4

- 86. The total number of complex additions for evaluating a *DFT* using *DIT-FFT* is:
 - (a) $\frac{N}{2}\log_2 N$
 - (b) $N \log_2 N$
 - (c) $\frac{N}{2}\log_{10} N$
 - (d) $N \log_{10} N$
- 87. A signal m(t) band-limited to $3 \, kHz$ is sampled at a rate $33\frac{1}{3}$ % higher than the Nyquist rate. The maximum acceptable error in the sample amplitude is 0.5 % of the peak amplitude m_p . The quantized samples are binary coded, then the minimum bandwidth of a channel required to transmit the encoded binary signal will be:
 - (a) 20 kHz
 - (b) 24 kHz
 - (c) 28 kHz
 - (d) 32 kHz
- 88. A reserved area in *RAM* used for temporary storage of data, return addresses and content of registers during subroutine calls and interrupts is called:
 - (a) Accumulator
 - (b) Flags
 - (c) Index register
 - (d) Stack

89.		-bit microprocessor has the typical two way connected buffered lines are called:
	(a)	Address bus
	(b)	Data bus

(d) Power lines

Control bus

(c)

- 90. The advance microprocessor architecture's term 'Superscalar Architecture' means:
 - (a) Scaling of application can be done with software
 - (b) The processor design enables the user to monitor the scaling performance of processor
 - (c) It includes more than one execution unit
 - (d) More perirerals can be added to the architecture
- 91. In communication network security issues 'Authentication' deals with:
 - (a) Keeping information out of hands of unauthorized user
 - (b) Determining whom we are talking to before revealing sensitive information
 - (c) With the signatures
 - (d) To ensure the message received was really one sent and not something malicious

A channel of $3000 Hz$ bandwidth with a signal to thermal noise rational $30 dB$. The maximum number of bits per second the channel can trate without error will be:		
(a)	30,000 bps	
(b)	25,000 bps	
(c)	20,000 bps	
(d)	15,000 bps	
3. In an Ethernet <i>LAN</i> of 10 <i>Mbps</i> for the maximum length of 25 4 repeaters, the smallest frame that can guarantee to work consists of		
(a)	500 bits	
(b)	1000 bits	
(c)	200 bits	
(d)	2500 bits	
In a <i>PDH</i> system, the output of the first level multiplexer <i>DSI</i> will be:		
(a)	1.048 <i>Mbps</i>	
(b)	1.544 <i>Mbps</i>	
(c)	2.048 <i>Mbps</i>	
(d)	2.544 <i>Mbps</i>	
	30 dH without (a) (b) (c) (d) In a H (a) (b) (c) (d)	

95.	In a <i>GSM</i> cellular network, the 148 <i>data</i> frame starts and ends with <i>three</i> 0 <i>bits</i> . The purpose of these three bits is for:		
	(a)	Adding the zero padding to make frame of perfect size	
	(b)	Balancing of 1 and 0 in the data frame	
	(c)	Frame delineation	
	(d)	Guarding the frame	
96.	Which of the following functional architecture of a <i>GSM</i> system are correct?		
		 Radio Sub System (RSS) Networking and Switching Sub-system (NSS) Operation Sub System (OSS) Global Network Sub System (GNSS) 	
	(a)	1, 2 and 4 only	
	(b)	1, 3 and 4 only	
	(c)	2, 3 and 4 only	
	(d)	1, 2 and 3 only	
97.		When the microprocessor receives an interrupt request, it finishes the instruction it is executing and then jumps to:	
	(a)	IR	
	(b)	ACC	
	(c)	SP	
	(d)	ISR	

98. Which input notifies <i>MPU</i> that another address and data buses for data transfer?		n input notifies MPU that another device (DMA) wants to use the ss and data buses for data transfer?	
	(a)	HLDA	
	(b)	HOLD	
	(c)	\overline{INTA}	
	(d)	ALE	
99.	In a step index fibre the refractive index of core $n_1 = 1.48$ and that cladding $n_2 = 1.45$. The numerical apparture of the fibre will be nearly:		
	(a)	0.3	
	(b)	0.5	
	(c)	0.7	
	(d)	0.9	
100.	DMA Module can communicate with CPU through:		
	(a)	Interrupt	
	(b)	Cycle stealing	
	(c)	Branch instruction	
	(d)	None of these	